Online Database of Chemicals from Around the World

Iodobenzene-d5
[CAS# 7379-67-1]

Top Active Suppliers
Henan Ouber Technology Co., Ltd. China Inquire  
+86 (371) 6532-2607
+86 18937141980
anna.zhang@oubertec.com
QQ chat
WeChat: 18937141980
Chemical manufacturer since 2020
chemBlink massive supplier since 2020
Cn Chemunion Co., Ltd. China Inquire  
+86 17366116869
david@cnchemunion.com
QQ chat
WeChat: +86 15250069576
WhatsApp: +86 17366116869
Chemical manufacturer since 2019
chemBlink standard supplier since 2024
Complete supplier list of Iodobenzene-d5
Identification
Classification Chemical reagent >> Deuterated reagent
Name Iodobenzene-d5
Synonyms 1,2,3,4,5-pentadeuterio-6-iodobenzene
Molecular Structure CAS # 7379-67-1, Iodobenzene-d5, 1,2,3,4,5-pentadeuterio-6-iodobenzene
Molecular Formula C6D5I
Molecular Weight 209.04
CAS Registry Number 7379-67-1
EC Number 664-252-9
SMILES [2H]C1=C(C(=C(C(=C1[2H])[2H])I)[2H])[2H]
Properties
Density 1.8±0.1 g/cm3, Calc.*, 1.868 g/mL
Index of Refraction 1.620, Calc.*, 1.6161
Melting Point -29 ºC
Boiling Point 188.3±0.0 ºC (760 mmHg), Calc.*, 92-94 ºC (45 mmHg)
Flash Point 74.4±0.0 ºC, Calc.*, 74 ºC
* Calculated using Advanced Chemistry Development (ACD/Labs) Software.
Safety Data
Hazard Symbols symbol symbol   GHS05;GHS07 Danger    Details
Hazard Statements H302-H318    Details
Precautionary Statements P264-P264+P265-P270-P280-P301+P317-P305+P354+P338-P317-P330-P501    Details
Hazard Classification
up    Details
HazardClassCategory CodeHazard Statement
Serious eye damageEye Dam.1H318
Acute toxicityAcute Tox.4H302
SDS Available
up Discovory and Applicatios
Iodobenzene-d5 is a deuterated derivative of iodobenzene, where five hydrogen atoms in the benzene ring are replaced by deuterium, a stable isotope of hydrogen. The discovery of iodobenzene-d5 is closely tied to the need for deuterated compounds in advanced spectroscopic techniques, particularly in nuclear magnetic resonance (NMR) spectroscopy. Deuterium's unique properties provide significant advantages in both chemical analysis and reaction mechanism studies, which led to the development and synthesis of compounds like iodobenzene-d5.

The synthesis of iodobenzene-d5 typically involves the deuteration of benzene derivatives through isotopic exchange reactions, followed by halogenation to introduce the iodine group. In a common process, deuterated benzene (benzene-d6) is reacted with iodine and a catalyst, resulting in the formation of iodobenzene-d5. The presence of deuterium atoms instead of hydrogen reduces the compound's interaction with proton-sensitive instruments, making it an excellent solvent and reference compound for spectroscopic analyses.

The primary application of iodobenzene-d5 is in NMR spectroscopy. Deuterated compounds are crucial in NMR because deuterium does not produce signals in the proton NMR spectrum. This property allows scientists to minimize background signals, improving the clarity of spectra when analyzing other organic molecules. Iodobenzene-d5 is particularly useful as a deuterated solvent in studies of halogen-containing compounds, where the iodine atom can influence the chemical environment and help in understanding halogen-based interactions and reaction mechanisms.

In addition to NMR, iodobenzene-d5 is valuable in mass spectrometry, especially as an internal standard in isotope dilution analysis. Deuterated compounds like iodobenzene-d5 have nearly identical chemical behavior as their non-deuterated analogs but possess a distinct mass shift due to the presence of deuterium. This mass shift enables accurate quantification of target compounds and enhances the reliability of mass spectrometric measurements in pharmaceutical, environmental, and biochemical applications.

Iodobenzene-d5 is also employed in reaction mechanism studies, particularly in kinetic isotope effect research. By substituting hydrogen with deuterium in the benzene ring, researchers can observe the changes in reaction rates and gain insights into bond dissociation energies and transition states. The use of iodobenzene-d5 in such studies has contributed to a better understanding of the effects of halogens and isotopic substitution on chemical reactivity.

Moreover, iodobenzene-d5 finds use in synthetic chemistry, where it acts as a building block for the preparation of more complex deuterated molecules. Deuterated iodobenzene serves as a precursor in cross-coupling reactions, such as the Suzuki and Heck reactions, allowing chemists to introduce deuterium into aromatic systems with precision. This capability is essential for producing deuterium-labeled compounds used in pharmacokinetics, drug metabolism studies, and isotope tracing experiments.

The discovery and application of iodobenzene-d5 highlight its importance in spectroscopy, synthetic chemistry, and reaction studies. Its stable deuterium incorporation provides researchers with a versatile tool for analyzing and understanding chemical systems with greater accuracy and detail.
Market Analysis Reports
List of Reports Available for Iodobenzene-d5
Related Products
6-Iodoanthranilic acid  3-Iodo-7-azaindole  3-Iodo-7-azaindole-5-carboxylic acid methyl ester  3-Iodo-1-azetidinecarboxylic acid phenylmethyl ester  2-Iodobenzaldehyde  3-Iodobenzaldehyde  4-Iodobenzaldehyde  4-Iodobenzaldehyde oxime  2-Iodobenzamide  Iodobenzene  Iodobenzene diacetate  2-Iodo-1,4-benzenediamine  2-Iodo-1,4-benzenedicarboxylic acid  2-Iodobenzene-1,3-diol  3-Iodobenzeneethanamine  2-Iodobenzeneethanamine  4-Iodobenzenepentanoic acid  2-Iodobenzenesulfonic acid  2-Iodobenzenesulfonic acid sodium salt  4-Iodobenzenesulfonyl chloride