Online Database of Chemicals from Around the World

Ferrocene
[CAS# 102-54-5]

Top Active Suppliers
Tianjin Zhongxin Chem-tech Co., Ltd. China Inquire  
+86 (22) 6688-0623
sales@tjzxchem.com
Chemical manufacturer since 2007
chemBlink premium supplier since 2009
Shanghai Worldyang Chemical Co., Ltd. China Inquire  
+86 13651600618
+86 (21) 5679-5779
sales7777@worldyachem.com
QQ chat
WeChat: 13651600618
WhatsApp: +86 13651600618
Chemical manufacturer since 2012
chemBlink premium supplier since 2023
Identification
Classification Organic raw materials >> Organometallic compound >> Organic iron
Name Ferrocene
Synonyms Di-2,4-cyclopentadien-1-yliron; Biscyclopentadienyliron; Dicyclopentadienyliron
Molecular Structure CAS # 102-54-5, Ferrocene, Di-2,4-cyclopentadien-1-yliron, Biscyclopentadienyliron, Dicyclopentadienyliron
Molecular Formula C10H10Fe
Molecular Weight 186.03
CAS Registry Number 102-54-5
EC Number 203-039-3
SMILES [CH-]1C=CC=C1.[CH-]1C=CC=C1.[Fe+2]
Properties
Melting point 173-176 ºC
Sublimation 100 ºC
Boiling point 249 ºC
Water solubility practically insoluble
Safety Data
Hazard Symbols symbol symbol symbol symbol   GHS02;GHS07;GHS08;GHS09 Danger    Details
Hazard Statements H228H302+H332-H302-H332-H360-H373-H410    Details
Precautionary Statements P203-P210-P240-P241-P260-P261-P264-P270-P271-P273-P280-P301+P317-P304+P340-P317-P318-P319-P330-P370+P378-P391-P405-P501    Details
Hazard Classification
up    Details
HazardClassCategory CodeHazard Statement
Acute toxicityAcute Tox.4H302
Flammable solidsFlam. Sol.1H228
Reproductive toxicityRepr.1BH360
Chronic hazardous to the aquatic environmentAquatic Chronic1H410
Acute toxicityAcute Tox.4H332
Specific target organ toxicity - repeated exposureSTOT RE2H373
Chronic hazardous to the aquatic environmentAquatic Chronic2H411
Specific target organ toxicity - repeated exposureSTOT RE1H372
Chronic hazardous to the aquatic environmentAquatic Chronic1H412
Reproductive toxicityRepr.2H361
Specific target organ toxicity - single exposureSTOT SE3H335
Eye irritationEye Irrit.2H319
Transport Information UN 1325
SDS Available
up Discovory and Applicatios
Ferrocene, an organometallic compound with the formula Fe(C₅H₅)₂, stands as one of the most iconic molecules in the field of chemistry due to its unique structure and versatile applications. Discovered in 1951, ferrocene was the first metallocene compound to be synthesized, marking the advent of a new class of organometallic compounds known as sandwich compounds. This discovery significantly advanced the understanding of bonding between transition metals and organic ligands, leading to a range of applications in materials science, catalysis, and medicine.

The synthesis of ferrocene occurred almost accidentally when researchers were investigating the reaction between cyclopentadienyl magnesium bromide and ferric chloride. The resulting compound exhibited unexpected stability and a distinctive orange color. Upon structural analysis, it was revealed that ferrocene consists of two cyclopentadienyl anions (C₅H₅⁻) bonded symmetrically to a central iron (Fe²⁺) atom. This structure, where the iron atom is sandwiched between two parallel cyclopentadienyl rings, challenged the existing theories of bonding and prompted the development of the concept of aromaticity in organometallic chemistry.

The unique structure of ferrocene has endowed it with several remarkable properties, including thermal stability, chemical resistance, and ease of substitution at the cyclopentadienyl rings. These characteristics have led to its widespread use in various applications. In materials science, ferrocene is a key building block for the synthesis of conducting polymers and molecular electronic devices. Its ability to undergo reversible redox reactions makes it an ideal candidate for use in batteries, sensors, and other electrochemical applications.

In the field of catalysis, ferrocene derivatives have been extensively studied and utilized. The iron center in ferrocene can be functionalized to create catalysts that are highly effective in a range of organic transformations, including hydrogenation, polymerization, and cross-coupling reactions. These ferrocene-based catalysts offer advantages such as high activity, selectivity, and the ability to operate under mild conditions, making them valuable in both academic research and industrial processes.

Ferrocene and its derivatives have also found applications in medicine. The compound's stability and low toxicity make it suitable for use in drug design and development. Ferrocene-containing drugs have been explored for their potential as anticancer agents, leveraging the redox properties of the iron center to generate reactive oxygen species that can selectively target cancer cells. Additionally, ferrocene derivatives are being investigated for their use in diagnostic imaging and as therapeutic agents in various diseases.

The discovery of ferrocene not only expanded the scope of organometallic chemistry but also paved the way for the development of numerous other metallocenes, each with its own unique properties and applications. The versatility of ferrocene continues to inspire research across multiple disciplines, from materials science to medicine, underscoring its enduring significance in modern chemistry.
Market Analysis Reports
List of Reports Available for Ferrocene
Related Products
Ferric phosphate tetrahydrate  Ferric potassium oxalate trihydrate  Ferric pyrophosphate  Ferric silicon  Ferric sodium oxalate  Ferric sulfate  Ferric sulfate  Ferriheme hydroxide  Ferritin (horse spleen protein moiety reduced)  Ferrlecit  Ferroceneacetic acid  Ferroceneboronic acid  Ferrocenecarboxaldehyde  Ferrocenecarboxamide  Ferrocenecarboxylic acid  1,1'-Ferrocenedicarboxaldehyde  1,1'-Ferrocenedicarboxylic acid  1,1'-Ferrocenedimethanol  Ferrocenemethanol  Ferrocenemethanol methacrylate